Covering Times of Random Walks on Bounded Degree Trees and Other Graphs

نویسنده

  • David Zuckerman
چکیده

The motivating problem for this paper is to find the expected covering time of a random walk on a balanced binary tree with n vertices. Previous upper bounds for general graphs of O(1VI jE[)~ll and O(I Vl I-EWdmin) 12) imply an upper bound of O(n2). We show an upper bound on general graphs of 0(3 IEI log IV]), which implies an upper bound of O(n log 2 n). The previous lower bound was f2 ( Ig l log lVI) for trees, t21 In our main result, we show a lower bound of Q(IVI (logam,~ [Vt) 2) for trees, which yields a lower bound of Q(nlog2n). We also extend our techniques to show an upper bound for general graphs of O(max{E= Ti} log I VI ).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walks on Highly Symmetric Graphs

We consider uniform random walks on finite graphs with n nodes. When the hitting times are symmetric, the expected covering time is at least 89 log n O(n log log n) uniformly over all such graphs. We also obtain bounds for the covering times in terms of the eigenvalues of the transition matrix of the Markov chain. For distance-regular graphs, a general lower bound of ( n 1 ) l o g n is obtained...

متن کامل

Topology-Hiding Computation on All Graphs

A distributed computation in which nodes are connected by a partial communication graph is called topology-hiding if it does not reveal information about the graph beyond what is revealed by the output of the function. Previous results have shown that topology-hiding computation protocols exist for graphs of constant degree and logarithmic diameter in the number of nodes [Moran-OrlovRichelson, ...

متن کامل

Symmetric Groups and Expander Graphs

We construct explicit generating sets Sn and S̃n of the alternating and the symmetric groups, which turn the Cayley graphs C(Alt(n), Sn) and C(Sym(n), S̃n) into a family of bounded degree expanders for all n. This answers affirmatively an old question which has been asked many times in the literature. These expanders have many applications in the theory of random walks on groups, card shuffling a...

متن کامل

Branching random walks and contact processes on Galton-Watson trees

We consider branching random walks and contact processes on infinite, connected, locally finite graphs whose reproduction and infectivity rates across edges are inversely proportional to vertex degree. We show that when the ambient graph is a Galton-Watson tree then, in certain circumstances, the branching random walks and contact processes will have weak survival phases. We also provide bounds...

متن کامل

Large Bounded Degree Trees in Expanding Graphs

A remarkable result of Friedman and Pippenger [4] gives a sufficient condition on the expansion properties of a graph to contain all small trees with bounded maximum degree. Haxell [5] showed that under slightly stronger assumptions on the expansion rate, their technique allows one to find arbitrarily large trees with bounded maximum degree. Using a slightly weaker version of Haxell’s result we...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004